16 research outputs found

    Probabilistic Human-Robot Information Fusion

    Get PDF
    This thesis is concerned with combining the perceptual abilities of mobile robots and human operators to execute tasks cooperatively. It is generally agreed that a synergy of human and robotic skills offers an opportunity to enhance the capabilities of today’s robotic systems, while also increasing their robustness and reliability. Systems which incorporate both human and robotic information sources have the potential to build complex world models, essential for both automated and human decision making. In this work, humans and robots are regarded as equal team members who interact and communicate on a peer-to-peer basis. Human-robot communication is addressed using probabilistic representations common in robotics. While communication can in general be bidirectional, this work focuses primarily on human-to-robot information flow. More specifically, the approach advocated in this thesis is to let robots fuse their sensor observations with observations obtained from human operators. While robotic perception is well-suited for lower level world descriptions such as geometric properties, humans are able to contribute perceptual information on higher abstraction levels. Human input is translated into the machine representation via Human Sensor Models. A common mathematical framework for humans and robots reinforces the notion of true peer-to-peer interaction. Human-robot information fusion is demonstrated in two application domains: (1) scalable information gathering, and (2) cooperative decision making. Scalable information gathering is experimentally demonstrated on a system comprised of a ground vehicle, an unmanned air vehicle, and two human operators in a natural environment. Information from humans and robots was fused in a fully decentralised manner to build a shared environment representation on multiple abstraction levels. Results are presented in the form of information exchange patterns, qualitatively demonstrating the benefits of human-robot information fusion. The second application domain adds decision making to the human-robot task. Rational decisions are made based on the robots’ current beliefs which are generated by fusing human and robotic observations. Since humans are considered a valuable resource in this context, operators are only queried for input when the expected benefit of an observation exceeds the cost of obtaining it. The system can be seen as adjusting its autonomy at run-time based on the uncertainty in the robots’ beliefs. A navigation task is used to demonstrate the adjustable autonomy system experimentally. Results from two experiments are reported: a quantitative evaluation of human-robot team effectiveness, and a user study to compare the system to classical teleoperation. Results show the superiority of the system with respect to performance, operator workload, and usability

    Electrochemistry and Spin-Crossover Behavior of Fluorinated Terpyridine-Based Co(II) and Fe(II) Complexes

    Get PDF
    Due to their ability to form stable molecular complexes that have tailor-made properties, terpyridine ligands are of great interest in chemistry and material science. In this regard, we prepared two terpyridine ligands with two different fluorinated phenyl rings on the backbone. The corresponding CoII and FeII complexes were synthesized and characterized by single-crystal X-ray structural analysis, electrochemistry and temperature-dependent SQUID magnetometry. Single crystal X-ray diffraction analyses at 100 K of these complexes revealed Co−N and Fe−N bond lengths that are typical of low spin CoII and FeII centers. The metal centers are coordinated in an octahedral fashion and the fluorinated phenyl rings on the backbone are twisted out of the plane of the terpyridine unit. The complexes were investigated with cyclic voltammetry and UV/Vis-NIR spectroelectrochemistry. All complexes show a reversible oxidation and several reduction processes. Temperature dependent SQUID magnetometry revealed a gradual thermal SCO behavior in two of the complexes, while EPR spectroscopy provided further insights on the electronic structure of the metal complexes, as well as site of reduction

    Building a software architecture for a human-robot team using the orca framework

    Get PDF
    This paper considers the problem of building a software architecture for a human-robot team. The objective of the team is to build a multi-attribute map of the world by performing information fusion. A decentralized approach to information fusion is adopted to achieve the system properties of scalability and survivability. Decentralization imposes constraints on the design of the architecture and its implementation. We show how a Component-Based Software Engineering approach can address these constraints. The architecture is implemented using Orca – a component-based software framework for robotic systems. Experimental results from a deployed system comprised of an unmanned air vehicle, a ground vehicle, and two human operators are presented. A section on the lessons learned is included which may be applicable to other distributed systems with complex algorithms. We also compare Orca to the Player software framework in the context of distributed systems

    Bayesian filtering over compressed appearance states

    Get PDF
    This paper presents a framework for performing real-time recursive estimation of landmarks’ visual appearance. Imaging data in its original high dimensional space is probabilistically mapped to a compressed low dimensional space through the definition of likelihood functions. The likelihoods are subsequently fused with prior information using a Bayesian update. This process produces a probabilistic estimate of the low dimensional representation of the landmark visual appearance. The overall filtering provides information complementary to the conventional position estimates which is used to enhance data association. In addition to robotics observations, the filter integrates human observations in the appearance estimates. The appearance tracks as computed by the filter allow landmark classification. The set of labels involved in the classification task is thought of as an observation space where human observations are made by selecting a label. The low dimensional appearance estimates returned by the filter allow for low cost communication in low bandwidth sensor networks. Deployment of the filter in such a network is demonstrated in an outdoor mapping application involving a human operator, a ground and an air vehicle

    Operators as information sources in sensor networks

    No full text
    This paper presents an approach of integrating human operators into a sensor network formed by a heterogeneous team of unmanned air and ground vehicles. Several objectives of human-network interaction are identified. The main focus of this work is on human-to-network information flow, i.e. human operators are regarded as information sources. It is argued that operators should make raw observations which are converted into the sensor network's common representation by a probabilistic model. The concepts are discussed in the context of an outdoor sensor network under development. Human operators contribute geometric feature information in the form of range and bearing observations. Visual feature properties are specified via meaningful class labels. A sensor model, represented as a Bayesian network, translates label observations into the system's representation. The model is also used to classify features as observed by robotic sensors

    Can Zinc Really Exist in Its Oxidation State +III?

    No full text
    Very recently, a thermochemically stable Zn<sup>III</sup> complex has been predicted by Samanta and Jena (J. Am. Chem. Soc. 2012, 134, 8400−8403). In contrast to their conclusions we show here by quantum chemical calculations that (a) Zn­(AuF<sub>6</sub>)<sub>3</sub> is not a thermochemically feasible compound, and (b) even if it could be made, it would not represent a Zn<sup>III</sup> oxidation state by any valid definition

    Adaptive human sensor model in sensor networks

    No full text
    This paper presents the design of a probabilistic model of human perception as an integral part of a decentralized data fusion system. The system consists of a team of human operators and robotic platforms, together forming a heterogenous sensor network. Human operators are regarded as information sources submitting raw observations. The observations are converted into a probabilistic representation suitable for fusion with the system's belief. The conversion is performed by a Human Sensor Model (HSM). The initial HSM is built offline based on an average of multiple human subjects conducting a calibration experiment. Since individual human operators may vary in their performance an online adaptation of the HSM is required. The network estimate is used for adaptation because the true feature state is unknown at runtime. Results of an outdoor calibration experiment using range and bearing observations are presented. Simulations show the feasibility of efficient online adaptation

    g

    No full text
    corecore